第406节(1 / 2)

加入书签

众所周知。

正弦值sinθ等于对边c除以斜边a,正切值tanθ等于对边c除以邻边b。

徐云又画了个夹角很小的直角三角形,角度估摸着只有几度:

“但是一旦角度θ非常非常小,那么邻边b和斜边a就快要重合了。”

“这时候我们是可以近似的认为a和b是相等的,也就是a≈b。”

随后在纸上写到:

【于是就有c/b≈c/a,即tanθ≈sinθ。】

【之前的公式可写成f=t·tan(θ+Δθ)-t·tanθ=μ·Δxaa^2f/at^2。】

“稍等一下。”

看到这句话,法拉第忽然皱起了眉头,打断了徐云。

很明显。

此时他已经隐隐出现了掉队的迹象:

“罗峰同学,用tanθ替代sinθ的意义是什么?”

徐云又看了小麦,小麦当即心领神会:

“法拉第先生,因为正切值tanθ还可以代表一条直线的斜率呀,也就是代表曲线在某一点的导数。”

“正切值的表达式是tanθ=c/b,如果建一个坐标系,那么这个c刚好就是直线在y轴的投影dy,b就是在x轴的投影dx。”

“它们的比值刚好就是导数dy/dx,也就是说tanθ=dy/dx。”

法拉第认真听完,花了两分钟在纸上演算了一番,旋即恍然的一拍额头:

“原来如此,我明白了,请继续吧,罗峰同学。”

徐云点点头,继续解释道:

“因为波的函数f(x,t)是关于x和t的二元函数,所以我们只能求某一点的偏导数。”

“那么正切值就等于它在这个点的偏导数tanθ=af/ax,原来的波动方程就可以写成这样……”

随后徐云在纸上写下了一个新方程:

t(af/axlx+△x-af/axlx)=μ·Δxaa^2f/at^2。

看起来比之前的要复杂一些,但现场的这些大佬的目光,却齐齐明亮了不少。

到了这一步,接下来的思路就很清晰了。

只要再对方程的两边同时除以Δx,那左边就变成了函数af/ax在x+Δx和x这两处的值的差除以Δx。

这其实就是af/ax这个函数的导数表达式。

也就是说。

两边同时除以一个Δx之后,左边就变成了偏导数af/ax对x再求一次导数,那就是f(x,t)对x求二阶偏导数了。同时上面已经用a^2f/at^2来表示函数对t的二阶偏导数,那么这里自然就可以用a^2f/ax^2来表示函数对x的二阶偏导数。

然后两边再同时除以t,得到方程就简洁多了:

a^2f/ax=μa^2f/tax^2。

同时如果你脑子还没晕的话便会发现……

μ/t的单位……

刚好就是速度平方的倒数!

也就是说如果我们把一个量定义成t/μ的平方根,那么这个量的单位刚好就是速度的单位。

可以想象,这个速度自然就是这个波的传播速度v:

v^2=t/μ。

因此将这个值代入之后,一个最终的公式便出现了:

a^2f/ax=a^2f/v^2ax^2。

这个公式在后世又叫做……

经典波动方程。

当然了。

这个方程没有没有考虑量子效应。

如果要考虑量子效应,这个经典的波动方程就没用了,就必须转而使用量子的波动方程,那就是大名鼎鼎的薛定谔方程。

薛定谔就是从这个经典波动方程出发,结合德布罗意的物质波概念,硬猜出了薛定谔方程。

没错,靠猜的。

↑返回顶部↑

书页/目录