第651节(1 / 2)

加入书签

负责后端电子学原件读数的男生叫做林子许,是个瘦瘦小小的男生,戴着一副金丝眼镜。

从实验开始之后,他便紧张的注意着面前的数显屏。

哒~

只见随着一道提示音响起。

某个能级的示数突然像是倒过来的a股指数一般,飞快的开始向上拉伸。

见此情形。

林子许一把拽下耳机,对徐云道:

“徐博士,我们观测到了大量的孤点粒子能量残余,你计算出的轨道概率最少在80%以上!”

徐云闻言,脸色没有太大变化。

那道公式毕竟是光环产物,虽然推导过程有些困难,但破解后的准确性还是很高的。

随后他沉默片刻,深吸一口气,下令道:

“那就开始……”

“上磁光囚禁阱吧。”

第359章 这章其实揭示了一个真相(上)

冷原子研究。

从字面就不难看出,这是指在超低温的条件下研究原子的工作。

高中化学没有挂科的同学应该知道。

原子的温度,最直接的反映是原子的速度。

也就是二者呈现正相关。

常温下。

原子运动速度是很快的,跟亚索似的滑来滑去,问号根本跟不上它们。

而要研究原子的物理性质,需要一个稳定的不会乱跑的单原子或者原子集团。

所以呢。

在研究原子的时候,就需要把原子冷却下来,也就是把它们给‘冻住’。

通常情况下,研究需要原子的温度在μk附近。

但是由于成本问题,很多时候并不需要整个实验装置都处于μk的温度下。

所以正常的做冷原子的课题组,都会使用激光来冷却原子。

也就是冷却很小的一块区域。

后世一些日料店也喜欢整这种活,不过他们不是冷却而是加热——把一块鲜牛肉的中间部位烤熟,其他部位都是生的,美其名曰炙心牛肉刺身。

这种吃法徐云倒是没多大偏见,但一片要五十多块钱就很挑战人智商的底线了……话题再回归原处。

目前冷却激光的原理大多都是多普勒冷却,原理较为复杂,此处就不多赘述了。

总之这玩意儿能把原子的温度降到很低很低。

但降温的最终结果只是给原子减速,原子虽然慢了下来,但它们依旧无序的散落在冷却区域的各处。

就像你圈定了很长一条的高速公路,让其中的车子都失去了动力停在原处,但想要研究这些车子,还需要把它们给聚集到一起才行。

所以这时候呢,就要上另一个技术手段了。

那就是磁-光囚禁阱。

磁-光囚禁阱简称磁光阱,代号mot。

在《自然》杂志2019年评选出的百大微观实验中,磁光阱位列第58位,是一个非常非常精妙的实验设计。

它利用了磁场和光场,慢慢的将微粒变得可控可聚集起来。

mot具体的方法是在z方向上安装一对反亥姆霍兹线圈,则在xy平面上是沿径向分布的磁场。

正中心磁场为0,在磁场不为0的地方,会产生塞曼分裂。

塞曼分裂的能级为Δe=gμbbz/n,而能级劈裂的大小与磁场大小有关,磁场大小与空间位置有关。

所以在存在mot的情况下,二能级原子会受到一个fmot的力。

此时施加两束对射的圆偏振光,当磁场正向时,相较于σ+的光,σ-的光失谐小,更接近与原子共振。

因此原子会沿着σ-的光传播方向移动到磁场接近0的位置。

磁场负向的地方则相反,最终还是会将原子推向磁场接近于0的地方。

最终。

↑返回顶部↑

书页/目录